
•  Walter Daelemans (walter.daelemans@uantwerpen.be)
•  Guy De Pauw (guy.depauw@uantwerpen.be)
•  Mike Kestemont (mike.kestemont@uantwerpen.be)

http://www.clips.uantwerpen.be/cl1415

Computational Linguistics
2014-2015

Practical

Program

Bayesian Inference

N-gram models

5

Statistical Methods

•  automatically derive statistical data from (annotated)
corpora

•  frequency of observed events are interpreted as the
probability of those events occurring in the future

•  We can use these probabilities to perform
disambiguation

e.g. Most likely tag for can in “I can do this.”?

 P(MD|can) vs P(NN|can) vs P(VB|can)

•  P(x|y) is calculated through Bayesian Inference

6

Noisy Channel

NOISY CHANNEL INPUT OUTPUT

Task Input Output
Speech
Recognition

String of Words Acoustic Signal

OCR/
Spellchecking

Correct Text Text with errors

POS Tagging String of POS Tags String of words

Machine
Translation

Sentence in English Sentence in Chinese

P(Input|Output) ?????

7

Bayesian Inference

Bayes’ Law P(x|y) = P(y|x).P(x)
 P(y)

e.g. From Wikipedia

 Drug Test: 0.99 accurate (99% chance that a user tests
 positive, 99% chance that a non-
 user tests negative)
 Users: 0.5% of the population

What is the probability that someone who tests positive, is a user?

P(User|+) = P(+|User).P(user)

 P(+)
 = 0.99 * 0.005
 P(+|User)*P(User) + P(+|non-user)*P(non-user)
 = 0.99 * 0.005
 0.99*0.005 + 0.01 * 0.995
 = 0.332

8

Bayesian Inference

Bayes’ Law P(x|y) = P(y|x).P(x)
 P(y)

From a corpus we calculated the following probabilities
P(can|MD) = 0.8 (the frequency with which can was observed as MD)
P(can|NN) = 0.1 and P(can|VB) = 0.1
P(MD) = 0.05, P(NN) = 0.3 and P(VB) = 0.1
P(can) = 0.00001

What is P(MD|can), the probability that we need to tag MD when we see
‘can’?

P(MD|can) = P(can|MD).P(MD)

 P(can)
 = 0.8 * 0.05 = 0.04
 1

P(NN|can) = P(can|NN).P(NN) = 0.1 * 0.3 = 0.03
P(VB|can) = P(can|VB).P(VB) = 0.1 * 0.1 = 0.01

9

Exercise

P(x|y) = P(y|x).P(x)
 P(y)

“can” is counted 60 times as “MD” in corpusA and 40 times as “NN”. In corpusB
“can” is counted 70 times as “NN” and 30 times as “MD”.

1. What is the probability of “can” as “MD” in corpusA?
2. What is the probability of “can” as “NN” in corpusB?
3. We pick a sentence randomly from one of the 2 corpora:

 “I can do this”

What is the probability that this sentence came from corpusA?

10

Exercise

P(x|y) = P(y|x).P(x)
 P(y)

“can” is counted 60 times as “MD” in corpusA and 40 times as “NN”. In corpusB “can” is counted
70 times as “NN” and 30 times as “MD”.

1.  What is the probability of “can” as “MD” in corpusA?
2.  What is the probability of “can” as “NN” in corpusB?
3.  We pick a sentence randomly from one of the 2 corpora:

 “I can do this”

What is the probability that this sentence came from corpusA?

P(corpusA|canMD) = (P(canMD|corpusA).P(corpusA)) / P(canMD)
 = (60/100 x 1/2) / (60+30/200)
 = (0.6x0.5) / 0.45
 = 0.667

11

Bayesian Inference

argmaxInput P(fille|girl) =

 argmaxInput P(fille) P(girl|fille)

Prior
(Language

Model)

Likelihood
(Domain
Model)

In language technology, we calculate the probability
of the association between an input sequence and an
output sequence.

e.g. Machine translation

12

Bayesian Inference

argmaxInput P(fille|girl) =

 argmaxInput P(fille) P(girl|fille)

Prior
(Language

Model)

Likelihood
(Domain
Model)

The Domain Model provides the probability that girl
can be translated as fille
The language model provides the probability that the
word fille exist (in that context)

13

Bayes’ Rule & Noisy Channel

P(Input) P(Output|Input)

Machine Translation

Language Model

Translation model

OCR Model of OCR errors

Spellchecking Model of spelling
errors

POS-Tagging Tag-Word Model

Speech Recognition Acoustic model

14

Language Model

•  What is the probability of a given sequence of
 words, tokens, tags?

•  Most common: n-gram models

•  data driven: given n1,n2,n3,n4,…nz

•  unigram: P(word) = freq(word) / N

 P(sentence) = ∏P(word)

15

Language Model

•  What is the probability of a given sequence of
 words, tokens, tags?

•  Most common: n-gram models

•  data driven: given n1,n2,n3,n4,…nz

•  unigram: P(word) = freq(word) / N

 P(sentence) = ∏P(word)

16

Language Model

•  What is the probability of a given sequence of
 words, tokens, tags?

•  Most common: n-gram models

•  data driven: given n1,n2,n3,n4,…nz

•  unigram: P(word) = freq(word) / N

 P(sentence) = ∏P(word)

17

Language Model

•  What is the probability of a given sequence of
 words, tokens, tags?

•  Most common: n-gram models

•  data driven: given n1,n2,n3,n4,…nz

•  unigram: P(word) = freq(word) / N

 P(sentence) = ∏P(word)

18

Language Model

•  But unigram is a weak language model

•  Suppose we want to predict the most likely possible
word in the sentence

 Just then, the white…

According to unigram:
P(the) = 0.07 P(rabbit) = 0.00001

And so

P(Just then, the white the) > P(Just then, the white rabbit)

Although intuitively

P(Just then, the white the) < P(Just then, the white rabbit)

•  Contextual information limited to n-value (cfr. n-gram models)

19

Language Model

•  P(sentence) = ∏P(word)

•  Unigram: P(word) = freq(word) / N

•  bigram: P(wordi|wordi-1) = freq(‘wordi-1 wordi’) /
 freq(wordi-1)

P(rabbit|white) = freq(white rabbit)/freq(white)

P(the|white) = freq(white the)/freq(the)

data driven: given n1,n2,n3,n4,…nz

20

Language Model

•  P(sentence) = ∏P(word)

•  Unigram: P(word) = freq(word) / N

•  bigram: P(wordi|wordi-1) = freq(‘wordi-1 wordi’) /
 freq(wordi-1)

P(rabbit|white) = freq(white rabbit)/freq(white)

P(the|white) = freq(white the)/freq(the)

data driven: given n1,n2,n3,n4,…nz

21

Language Model

•  P(sentence) = ∏P(word)

•  Unigram: P(word) = freq(word) / N

•  bigram: P(wordi|wordi-1) = freq(‘wordi-1 wordi’) /
 freq(wordi-1)

P(rabbit|white) = freq(white rabbit)/freq(white)

P(the|white) = freq(white the)/freq(the)

data driven: given n1,n2,n3,n4,…nz

22

Language Model

•  P(sentence) = ∏P(word)

•  Unigram: P(word) = freq(word) / N

•  bigram: P(wordi|wordi-1) = freq(‘wordi-1 wordi’) /
 freq(wordi-1)

•  trigram: P(wordi|wordi-2wordi-1) = freq(‘wordi-2 wordi-1 wordi’) /
 freq(wordi-2wordi-1)

P(rabbit|the white) = freq(the white rabbit)/freq(the white)

P(the|the white) = freq(the white the)/freq(the white)

data driven: given n1,n2,n3,n4,…nz

23

Language Model

•  P(sentence) = ∏P(word)

•  Unigram: P(word) = freq(word) / N

•  bigram: P(wordi|wordi-1) = freq(‘wordi-1 wordi’) /
 freq(wordi-1)

•  trigram: P(wordi|wordi-2wordi-1) = freq(‘wordi-2 wordi-1 wordi’) /
 freq(wordi-2wordi-1)

P(rabbit|the white) = freq(the white rabbit)/freq(the white)

P(the|the white) = freq(the white the)/freq(the white)

data driven: given n1,n2,n3,n4,…nz

24

N-gram models

•  The higher n, the more context is captured

•  The higher n, the less statistical evidence we
 find for each context: sparse data
 problem

25

PCFG as a language model

16/343

16/2401

P(tree) = ΠP(rulei)

P(parse) = Πp(rulei)
P(sentence)= ∑p(parsek)
P(text) = ∑p(sentencel)

26

Bayes’ Rule & Noisy Channel

P(Input) P(Output|Input)

Machine Translation

Language model

Translation model

OCR Model of OCR errors

Spellchecking Model of spelling
errors

POS-Tagging Tag-Word Model

Speech Recognition Acoustic model

27

Probabilistic Spelling Correction

Kernighan et al (1990): misspelt word differs from correct word in 1
substition, insertion, transposition or deletion

error Correction Correct
Letter

Error
Letter

Position Type

acress actress t - 2 deletion
acress cress - a 0 insertion
acress caress ca ac 0 transposition
acress access c r 2 substitution
…

•  correction = argmaxP(t|c).P(c)

 with t=typo and C: list of correct words

•  P(c): prior: language model (unigram)

•  P(t|c): Model of misspellings

28

Probabilistic Spelling Correction

c Freq(c) P(c)

actress 1343 .0000315
cress 0 .000000014
caress 4 .0000001
access 2280 .000058

•  Kernighan: 44x106 word AP newswire corpus

•  PRIOR:

29

Probabilistic Spelling Correction

c Freq(c) P(c)

actress 1343 .0000315
cress 0 .000000014
caress 4 .0000001
access 2280 .000058

•  Kernighan: 44x106 word AP newswire corpus

•  PRIOR:

smoothing

30

Smoothing

•  What if we want to calculate the probability of something we
 haven’t seen yet?

 I like failblog

 + ‘failblog’ may not have been seen yet

 è 0 probability

 è 0 probability for entire sentence (∏P(word))

•  Add-1 smoothing: P(word) = freq(word) + α

 N + α.d
 with α: normalization factor (often α=1)
 with N: total number of tokens (words)
 with d: total number of types (individual words)

31

Probabilistic Spelling Correction

•  Model of misspellings: P(t|c)

•  Proper P(t|c) cannot be computed, but can be estimated

•  Use corpus of errors to construct confusion matrix of 26x26
 for each type of mistake

del[x,y]: count how many times xy was typed as x

ins[x,y]: count how many times x was types as xy

sub[x,y]: count how many times x was typed as y

trans[x,y]: how many times xy was typed as yx

32

Probabilistic Spelling Correction

Correction P(c) P(t|c) p(t|c)p(c)
actress .0000315 .000117 3.69x10-9

cress .000000014 .00000144 2.02x10-14

caress .0000001 .0000164 1.64x10-13

access .000058 .000000209 1.21x10-11

•  acress is rewritten as ‘actress’

•  use more intelligent prior to improve results in context

33

Bayes’ Rule & Noisy Channel

P(Input) P(Output|Input)

Machine Translation

Language Model

Translation model

OCR Model of OCR errors

Spellchecking Model of spelling
errors

POS-Tagging Tag-Word Model

Speech Recognition Acoustic model

34

Probabilistic n-gram POS Tagging

•  Requires annotated corpus

 can/md the/dt tag/nn be/vb better/jjr

•  Unigram: P(word|tag)P(tag)

 frequency of the tag for this word in corpus

•  Bigram: P(wordi|tagi) P(tagi|tagi-1)

 frequency of the tag for this word in corpus, given previous tag

•  Trigram: P(wordi|tagi) P(tagi|tagi-1,tagi-2)

 frequency of the tag for this word in corpus,
 given previous two tags

•  Good Results, but possible data sparseness problems

35

Bayes’ Rule & Noisy Channel

P(Input) P(Output|Input)

Machine Translation

Language Model

Translation model

OCR Model of OCR errors

Spellchecking Model of spelling
errors

POS-Tagging Tag-Word Model

Speech Recognition Acoustic model

36

Modeling English Pronunciation
Variation

•  Differences in pronunciation

•  2 classes:

•  allophonic variation (due to context)

 about - [ax b aw] 32%

 - [ax b aw t] 16%

 - [ix b aw] 8%

•  Lexical variation

 about - [baw] 9%

37

•  we can model the distribution of this variation by introducing
 probabilities into a FSA

= a Weighted Automaton (Markov Chain)

•  Models Sociolinguistic variation

t ow m aa t ow

ey

.95

.05

Modeling English Pronunciation
Variation

38

•  model allophonic variation:

t ow m aa t ow

ey

.95

.05

ax

.35

.05

.60

dx

.05

.95

Modeling English Pronunciation
Variation

39

•  “about”: actual weighted automaton trained on
pronunciations of Switchboard Corpus

start ix b ae t end

aw

.85

.15

ax

.68

.20

.12

dx

.30

.16

.37

.63

.54

Modeling English Pronunciation
Variation

Edit
Distance

41

Minimum Edit Distance

•  Spell checking: check writing against list of
words/morphotactics

•  Suggest list of alternatives?
 closest match
 fuzzy match

•  How to calculate the “distance” between two
words: minimum edit distance

•  The minimal number of deletions, insertions,
substitutions to go from word a to b

42

Minimum Edit Distance
•  intention vs execution
•  3 operations (deletion, insertion, substitution)
•  Alignment

•  Levenshtein distance: equal weight to all operations, no
substitution (1substition = 1 deletion + 1 insertion)

•  Levenshtein distance of 8 in example above

i n t e * n t i o n

* e x e c u t i o n
d s s i s

43

Minimum Edit Distance
 i n t e n t i o n

[delete i] n t e n t i o n
[substitute n for e] e t e n t i o n
[substitute t for x] e x e n t i o n
[insert c] e x e c n t i o n
[substitute n for u] e x e c u t i o n

44

Minimum Edit Distance
•  Computed through dynamic programming
•  Solve problem by combining solutions to

subproblems
•  Table-driven

•  Useful for
-  Alignment
-  Fuzzy string match
-  Spelling correction

45

Algorithm

Function LEVENSHTEIN-DISTANCE(target,source) returns levenshtein-distance

n ß length(target)
m ß length(source)
Create a distance matrix distance[n+1,m+1]
Initialize the 0th row and column to be the distance from the empty string

 distance[0,0] = 0
 for each column i from 1 to n do
 distance[i,0] ß distance[i-1,0] + 1 (= insertion cost)
 for each row j from 1 to m do
 distance[0,j] ß distance[0,j-1] + 1 (= deletion cost)

For each column i from 1 to n do
 for each row j from 1 to m do

 distance[i,j] ß MIN(distance[i-1,j] + 1 (= insertion-cost),
 distance[i,j-1] + 1 (= deletion-cost),
 distance[i-1,j-1] + 2 (substition cost if A≠B)
)

Return distance[n,m]

46

Edit distance matrix
n 9 ↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↙←↓12 ↓11 ↓10 ↓9 ↙8

o 8 ↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↓10 ↓9 ↙8 ↓9

i 7 ↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↓9 ↙8 ←9 ←10

t 6 ↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙8 ←9 ←10 ←↓11

n 5 ↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↙↓10

e 4 ↙3 ←4 ↙←↓5 ←6 ←7 ↙←↓8 ↙←↓9 ↙←↓10 ↓9

t 3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙7 ←↓8 ↙←↓9 ↓8

n 2 ↙←↓3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↓7 ↙←↓8 ↙7

i 1 ↙←↓2 ↙←↓3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙6 ←7 ←8

ε 0 1 2 3 4 5 6 7 8 9

ε e x e c u t i o n

47

n 9 ↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↙←↓12 ↓11 ↓10 ↓9 ↙8

o 8 ↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↓10 ↓9 ↙8 ↓9

i 7 ↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↓9 ↙8 ←9 ←10

t 6 ↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙8 ←9 ←10 ←↓11

n 5 ↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↙↓10

e 4 ↙3 ←4 ↙←↓5 ←6 ←7 ↙←↓8 ↙←↓9 ↙←↓10 ↓9

t 3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙7 ←↓8 ↙←↓9 ↓8

n 2 ↙←↓3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↓7 ↙←↓8 ↙7

i 1 ↙←↓2 ↙←↓3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙6 ←7 ←8

ε 0 1 2 3 4 5 6 7 8 9

ε e x e c u t i o n

 i n t e n t i o n
COL0 [delete i] n t e n t i o n
COL1 [substitute n for e] e t e n t i o n
COL2 [substitute t for x] e x e n t i o n
COL3 e x e n t i o n
COL4 [insert c] e x e c n t i o n
COL5 [substitute n for u] e x e c u t i o n
COL6 e x e c u t i o n
…COL9 e x e c u t i o n

Edit operations are determined by starting from the top right cell, following the arrows to
find a path to cell0. Often, several paths are possible.

Path1

48

n 9 ↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↙←↓12 ↓11 ↓10 ↓9 ↙8

o 8 ↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↓10 ↓9 ↙8 ↓9

i 7 ↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↓9 ↙8 ←9 ←10

t 6 ↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙8 ←9 ←10 ←↓11

n 5 ↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↙↓10

e 4 ↙3 ←4 ↙←↓5 ←6 ←7 ↙←↓8 ↙←↓9 ↙←↓10 ↓9

t 3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙7 ←↓8 ↙←↓9 ↓8

n 2 ↙←↓3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↓7 ↙←↓8 ↙7

i 1 ↙←↓2 ↙←↓3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙6 ←7 ←8

ε 0 1 2 3 4 5 6 7 8 9

ε e x e c u t i o n

 i n t e n t i o n
COL0a [delete i] n t e n t i o n
COL0b [delete n] t e n t i o n
COL0c [delete t] e n t i o n
COL1 e n t i o n
COL2 [insert x] e x n t i o n
COL3 [substitute n for e] e x e t i o n
COL4 [insert c] e x e c t i o n
COL5 [insert u] e x e c u t i o n

Edit operations are determined by starting from the top right cell, following the arrows to
find a path to cell0. Often, several paths are possible.

Path1

49

Exercise

n 5

e 4

l 3

e 2

d 1

ε 0 1 2 3 4 5 6 7

ε g e d e e l d

Calculate the levenshtein distance between
 ‘delen’ en ‘gedeeld’

50

Exercise

n 5 ↙←↓6

e 4 ↙←↓5

l 3 ↙←↓4

e 2 ↙←↓3

d 1 ↙←↓2

ε 0 1 2 3 4 5 6 7

ε g e d e e l d

Calculate the levenshtein distance between
 ‘delen’ en ‘gedeeld’

51

Exercise

n 5 ↙←↓6 ↓5

e 4 ↙←↓5 ↙↓4

l 3 ↙←↓4 ↓3

e 2 ↙←↓3 ↙2

d 1 ↙←↓2 ↙←↓3

ε 0 1 2 3 4 5 6 7

ε g e d e e l d

Calculate the levenshtein distance between
 ‘delen’ en ‘gedeeld’

52

Exercise

n 5 ↙←↓6 ↓5 ↙←↓6

e 4 ↙←↓5 ↙↓4 ↙←↓5

l 3 ↙←↓4 ↓3 ↙←↓4

e 2 ↙←↓3 ↙2 ←↓3

d 1 ↙←↓2 ↙←↓3 ↙2

ε 0 1 2 3 4 5 6 7

ε g e d e e l d

Calculate the levenshtein distance between
 ‘delen’ en ‘gedeeld’

53

Exercise

n 5 ↙←↓6 ↓5 ↙←↓6 ↓5

e 4 ↙←↓5 ↙↓4 ↙←↓5 ↙↓4

l 3 ↙←↓4 ↓3 ↙←↓4 ↓3

e 2 ↙←↓3 ↙2 ←↓3 ↙2

d 1 ↙←↓2 ↙←↓3 ↙2 ←3

ε 0 1 2 3 4 5 6 7

ε g e d e e l d

Calculate the levenshtein distance between
 ‘delen’ en ‘gedeeld’

54

Exercise

n 5 ↙←↓6 ↓5 ↙←↓6 ↓5 ↓4

e 4 ↙←↓5 ↙↓4 ↙←↓5 ↙↓4 ↙3

l 3 ↙←↓4 ↓3 ↙←↓4 ↓3 ↙←↓4

e 2 ↙←↓3 ↙2 ←↓3 ↙2 ↙←3

d 1 ↙←↓2 ↙←↓3 ↙2 ←3 ←4

ε 0 1 2 3 4 5 6 7

ε g e d e e l d

Calculate the levenshtein distance between
 ‘delen’ en ‘gedeeld’

55

Exercise

n 5 ↙←↓6 ↓5 ↙←↓6 ↓5 ↓4 ↙←↓5

e 4 ↙←↓5 ↙↓4 ↙←↓5 ↙↓4 ↙3 ←↓4

l 3 ↙←↓4 ↓3 ↙←↓4 ↓3 ↙←↓4 ↙3

e 2 ↙←↓3 ↙2 ←↓3 ↙2 ↙←3 ←4

d 1 ↙←↓2 ↙←↓3 ↙2 ←3 ←4 ←5

ε 0 1 2 3 4 5 6 7

ε g e d e e l d

Calculate the levenshtein distance between
 ‘delen’ en ‘gedeeld’

56

Exercise

n 5 ↙←↓6 ↓5 ↙←↓6 ↓5 ↓4 ↙←↓5 ↙←↓6

e 4 ↙←↓5 ↙↓4 ↙←↓5 ↙↓4 ↙3 ←↓4 ↙←↓5

l 3 ↙←↓4 ↓3 ↙←↓4 ↓3 ↙←↓4 ↙3 ←4

e 2 ↙←↓3 ↙2 ←↓3 ↙2 ↙←3 ←4 ←5

d 1 ↙←↓2 ↙←↓3 ↙2 ←3 ←4 ←5 ↙←6

ε 0 1 2 3 4 5 6 7

ε g e d e e l d

Calculate the levenshtein distance between
 ‘delen’ en ‘gedeeld’

57

n 5 ↙←↓6 ↓5 ↙←↓6 ↓5 ↓4 ↙←↓5 ↙←↓6

e 4 ↙←↓5 ↙↓4 ↙←↓5 ↙↓4 ↙3 ←↓4 ↙←↓5

l 3 ↙←↓4 ↓3 ↙←↓4 ↓3 ↙←↓4 ↙3 ←4

e 2 ↙←↓3 ↙2 ←↓3 ↙2 ↙←3 ←4 ←5

d 1 ↙←↓2 ↙←↓3 ↙2 ←3 ←4 ←5 ↙←6

ε 0 1 2 3 4 5 6 7

ε g e d e e l d

 d e l e n
COL1 [insert g] g d e l e n
COL2 [insert e] g e d e l e n

COL3 g e d e l e n
COL4 g e d e l e n
COL5 [insert e] g e d e e l e n
COL6 g e d e e l e n
COL6b [delete e] g e d e e l n
COL7 [substitute n for d] g e d e e l d

Zie ook: http://www.let.rug.nl/kleiweg/lev/

58

Assignment
>>> from nltk.corpus import brown
>>> corpus = brown.sents()
>>> corpus[4]
[u'The', u'jury', u'said', u'it', u'did', u'find', u'that', u'many', u'of', u"Georgia's", u'registration', u'and', u'election', u'laws', u'``', u'are',
u'outmoded', u'or', u'inadequate', u'and', u'often', u'ambiguous', u"''", u'.']

Write a script that extracts a trigram language model from this corpus. You can do this in 5
steps:

1.  Create a dictionary (trigrams = {}) and add all trigrams in the corpus (key) and their associated count
(value).

2.  Create a dictionary (bigrams = {}) and add all bigrams in the corpus (key) and their associated count
(value).

3.  For every key in the trigram dictionary, divide the count by the value of the relevant bigram
4.  Your trigram dictionary now contains probabilities
5.  (save the dictionary using pickle)

Write a script that computes the probability of a sentence, according to your language
model
>>> probability(corpus[4]) = <some value>
DEADLINE: 22 December 2014

Send python code through e-mail to guy.depauw@uantwerpen.be
Don’t hesitate to contact your helpline guy.depauw@uantwerpen.be

