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Statistical Methods 

•  automatically derive statistical data from (annotated) 
corpora 

•  frequency of observed events are interpreted as the 
probability of those events occurring in the future 

•  We can use these probabilities to perform 
disambiguation 

e.g. Most likely tag for can in “I can do this.”? 

 P(MD|can) vs P(NN|can) vs P(VB|can) 

•  P(x|y) is calculated through Bayesian Inference 
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Noisy Channel 

NOISY CHANNEL INPUT OUTPUT 

Task Input Output 
Speech 
Recognition 

String of Words Acoustic Signal 

OCR/ 
Spellchecking 

Correct Text Text with errors 

POS Tagging String of POS Tags String of words 

Machine 
Translation 

Sentence in English Sentence in Chinese 

P(Input|Output)  ????? 
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Bayesian Inference 

Bayes’ Law  P(x|y)  =  P(y|x).P(x) 
                    P(y) 

 
e.g.  From Wikipedia 

 Drug Test: 0.99 accurate (99% chance that a user tests  
    positive, 99% chance that a non-  
    user tests negative) 
 Users: 0.5% of the population 
  

What is the probability that someone who tests positive, is a user? 
 
P(User|+)  =  P(+|User).P(user) 

    P(+) 
  =  0.99 * 0.005 
   P(+|User)*P(User) + P(+|non-user)*P(non-user) 
  =  0.99 * 0.005 
   0.99*0.005 + 0.01 * 0.995 
  =  0.332 
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Bayesian Inference 

Bayes’ Law  P(x|y)  =  P(y|x).P(x) 
                    P(y) 

 
From a corpus we calculated the following probabilities 
P(can|MD) = 0.8 (the frequency with which can was observed as MD) 
P(can|NN) = 0.1 and P(can|VB) = 0.1 
P(MD) = 0.05, P(NN) = 0.3 and P(VB) = 0.1  
P(can) = 0.00001 

  
What is P(MD|can), the probability that we need to tag MD when we see 
‘can’? 
 
P(MD|can)  =  P(can|MD).P(MD) 

            P(can) 
  =  0.8 * 0.05  =  0.04 
           1 

P(NN|can) = P(can|NN).P(NN) = 0.1 * 0.3 = 0.03 
P(VB|can) = P(can|VB).P(VB)  = 0.1 * 0.1 = 0.01    
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Exercise 

P(x|y)  =  P(y|x).P(x) 
                 P(y) 

“can” is counted 60 times as “MD” in corpusA and 40 times as “NN”. In corpusB 
“can” is counted 70 times as “NN” and 30 times as “MD”. 
 
1. What is the probability of “can” as “MD” in corpusA? 
2. What is the probability of “can” as “NN” in corpusB? 
3. We pick a sentence randomly from one of the 2 corpora: 

  “I can do this” 
 
What is the probability that this sentence came from corpusA? 
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Exercise 

P(x|y)  =  P(y|x).P(x) 
                 P(y) 

“can” is counted 60 times as “MD” in corpusA and 40 times as “NN”. In corpusB “can” is counted 
70 times as “NN” and 30 times as “MD”. 
 
1.  What is the probability of “can” as “MD” in corpusA? 
2.  What is the probability of “can” as “NN” in corpusB? 
3.  We pick a sentence randomly from one of the 2 corpora: 

  “I can do this” 
 
What is the probability that this sentence came from corpusA? 
 

P(corpusA|canMD)  = (P(canMD|corpusA).P(corpusA)) /   P(canMD) 
   = (60/100 x 1/2) / (60+30/200) 
   = (0.6x0.5) / 0.45 
   = 0.667 
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Bayesian Inference 

argmaxInput P(fille|girl) = 
 

 argmaxInput P(fille)   P(girl|fille)  
 

Prior 
(Language 

Model) 

 
 

Likelihood 
(Domain 
Model) 

In language technology, we calculate the probability 
of the association between an input sequence and an 
output sequence. 
 
e.g. Machine translation 
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Bayesian Inference 

argmaxInput P(fille|girl) = 
 

 argmaxInput P(fille)   P(girl|fille)  
 

Prior 
(Language 

Model) 

 
 

Likelihood 
(Domain 
Model) 

The Domain Model provides the probability that girl 
can be translated as fille 
The language model provides the probability that the 
word fille exist (in that context) 
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Bayes’ Rule & Noisy Channel 

P(Input) P(Output|Input) 

Machine Translation  
 
 
 
 
 
Language Model 

Translation model 

OCR Model of OCR errors 

Spellchecking Model of spelling 
errors 

POS-Tagging Tag-Word Model 

Speech Recognition Acoustic model 
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Language Model 

•  What is the probability of a given sequence of 
 words, tokens, tags? 

•  Most common: n-gram models 

•  data driven:  given  n1,n2,n3,n4,…nz 

•  unigram:  P(word) = freq(word) / N 

   P(sentence) = ∏P(word) 
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Language Model 

•  What is the probability of a given sequence of 
 words, tokens, tags? 

•  Most common: n-gram models 

•  data driven:  given  n1,n2,n3,n4,…nz 

•  unigram:  P(word) = freq(word) / N 

   P(sentence) = ∏P(word) 
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Language Model 

•  What is the probability of a given sequence of 
 words, tokens, tags? 

•  Most common: n-gram models 

•  data driven:  given  n1,n2,n3,n4,…nz 

•  unigram:  P(word) = freq(word) / N 

   P(sentence) = ∏P(word) 
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Language Model 

•  What is the probability of a given sequence of 
 words, tokens, tags? 

•  Most common: n-gram models 

•  data driven:  given  n1,n2,n3,n4,…nz 

•  unigram:  P(word) = freq(word) / N 

   P(sentence) = ∏P(word) 
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Language Model 

•  But unigram is a weak language model 

•  Suppose we want to predict the most likely possible 
word in the sentence 

  Just then, the white… 

According to unigram: 
P(the) = 0.07    P(rabbit) = 0.00001 

And so  

P(Just then, the white the) > P(Just then, the white rabbit) 

Although intuitively 

P(Just then, the white the) < P(Just then, the white rabbit) 

•  Contextual information limited to n-value (cfr. n-gram models) 
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Language Model 

•  P(sentence) = ∏P(word) 

•  Unigram: P(word) = freq(word) / N 

•  bigram: P(wordi|wordi-1) = freq(‘wordi-1 wordi’) /
      freq(wordi-1) 

P(rabbit|white) = freq(white rabbit)/freq(white) 

P(the|white) = freq(white the)/freq(the)  

 

data driven:  given  n1,n2,n3,n4,…nz 
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Language Model 

•  P(sentence) = ∏P(word) 

•  Unigram: P(word) = freq(word) / N 

•  bigram: P(wordi|wordi-1) = freq(‘wordi-1 wordi’) /
      freq(wordi-1) 

P(rabbit|white) = freq(white rabbit)/freq(white) 

P(the|white) = freq(white the)/freq(the)  

 

data driven:  given  n1,n2,n3,n4,…nz 
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Language Model 

•  P(sentence) = ∏P(word) 

•  Unigram: P(word) = freq(word) / N 

•  bigram: P(wordi|wordi-1) = freq(‘wordi-1 wordi’) /
      freq(wordi-1) 

P(rabbit|white) = freq(white rabbit)/freq(white) 

P(the|white) = freq(white the)/freq(the)  

 

data driven:  given  n1,n2,n3,n4,…nz 
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Language Model 

•  P(sentence) = ∏P(word) 

•  Unigram: P(word) = freq(word) / N 

•  bigram: P(wordi|wordi-1) = freq(‘wordi-1 wordi’) /
      freq(wordi-1) 

•  trigram: P(wordi|wordi-2wordi-1) = freq(‘wordi-2 wordi-1 wordi’) /  
      freq(wordi-2wordi-1) 

P(rabbit|the white) = freq(the white rabbit)/freq(the white) 

P(the|the white) = freq(the white the)/freq(the white)  

data driven:  given  n1,n2,n3,n4,…nz 
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Language Model 

•  P(sentence) = ∏P(word) 

•  Unigram: P(word) = freq(word) / N 

•  bigram: P(wordi|wordi-1) = freq(‘wordi-1 wordi’) /
      freq(wordi-1) 

•  trigram: P(wordi|wordi-2wordi-1) = freq(‘wordi-2 wordi-1 wordi’) /  
      freq(wordi-2wordi-1) 

P(rabbit|the white) = freq(the white rabbit)/freq(the white) 

P(the|the white) = freq(the white the)/freq(the white)  

data driven:  given  n1,n2,n3,n4,…nz 
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N-gram models 

•  The higher n, the more context is captured 

•  The higher n, the less statistical evidence we 
 find for each context: sparse data 
 problem 
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PCFG as a language model 

16/343 

16/2401 

P(tree) = ΠP(rulei) 

P(parse)  = Πp(rulei)  
P(sentence)= ∑p(parsek) 
P(text)  = ∑p(sentencel) 
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Bayes’ Rule & Noisy Channel 

P(Input) P(Output|Input) 

Machine Translation  
 
 
 
Language model 

Translation model 

OCR Model of OCR errors 

Spellchecking Model of spelling 
errors 

POS-Tagging Tag-Word Model 

Speech Recognition Acoustic model 
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Probabilistic Spelling Correction 

Kernighan et al (1990): misspelt word differs from correct word in 1 
substition, insertion, transposition or deletion  

error Correction Correct 
Letter 

Error 
Letter 

Position Type 

acress actress t - 2 deletion 
acress cress - a 0 insertion 
acress caress ca ac 0 transposition 
acress access c r 2 substitution 
… 

•  correction = argmaxP(t|c).P(c) 

 with t=typo  and C: list of correct words 

•  P(c):   prior: language model  (unigram) 

•  P(t|c):  Model of misspellings 



28 

Probabilistic Spelling Correction 

c Freq(c) P(c) 

actress 1343 .0000315 
cress 0 .000000014 
caress 4 .0000001 
access 2280 .000058 

•  Kernighan:  44x106 word AP newswire corpus 

•  PRIOR:   
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Probabilistic Spelling Correction 

c Freq(c) P(c) 

actress 1343 .0000315 
cress 0 .000000014 
caress 4 .0000001 
access 2280 .000058 

•  Kernighan:  44x106 word AP newswire corpus 

•  PRIOR:   

smoothing 
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Smoothing 

•   What if we want to calculate the probability of something we 
 haven’t seen yet? 

 I like failblog 

 + ‘failblog’ may not have been seen yet 

  è 0 probability 

  è 0 probability for entire sentence  (∏P(word)) 

•  Add-1 smoothing:  P(word) =  freq(word) + α 

     N + α.d 
  with α: normalization factor (often α=1) 
  with N: total number of tokens (words) 
  with d: total number of types (individual words) 
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Probabilistic Spelling Correction 

•  Model of misspellings:  P(t|c) 

•  Proper P(t|c) cannot be computed, but can be estimated 

•  Use corpus of errors to construct confusion matrix of 26x26 
 for each type of mistake 

 

del[x,y]:  count how many times xy was typed as x 

ins[x,y]:  count how many times x was types as xy 

sub[x,y]:  count how many times x was typed as y  

trans[x,y]: how many times xy was typed as yx 
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Probabilistic Spelling Correction 

Correction P(c) P(t|c) p(t|c)p(c) 
actress .0000315 .000117 3.69x10-9 

cress .000000014 .00000144 2.02x10-14 

caress .0000001 .0000164 1.64x10-13 

access .000058 .000000209 1.21x10-11 

•  acress is rewritten as ‘actress’ 

•  use more intelligent prior to improve results in context 
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Bayes’ Rule & Noisy Channel 

P(Input) P(Output|Input) 

Machine Translation  
 
 
 
 
 
Language Model 

Translation model 

OCR Model of OCR errors 

Spellchecking Model of spelling 
errors 

POS-Tagging Tag-Word Model 

Speech Recognition Acoustic model 
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Probabilistic n-gram POS Tagging 

•  Requires annotated corpus 

 can/md the/dt tag/nn be/vb better/jjr 

•  Unigram:  P(word|tag)P(tag) 

  frequency of the tag for this word in corpus 

•  Bigram:  P(wordi|tagi) P(tagi|tagi-1) 

  frequency of the tag for this word in corpus, given previous tag 

•  Trigram:  P(wordi|tagi) P(tagi|tagi-1,tagi-2) 

  frequency of the tag for this word in corpus, 
   given previous two tags 

 

•  Good Results, but possible data sparseness problems 
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Bayes’ Rule & Noisy Channel 

P(Input) P(Output|Input) 

Machine Translation  
 
 
 
 
 
Language Model 

Translation model 

OCR Model of OCR errors 

Spellchecking Model of spelling 
errors 

POS-Tagging Tag-Word Model 

Speech Recognition Acoustic model 
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Modeling English Pronunciation 
Variation 

•  Differences in pronunciation 

•  2 classes: 

•  allophonic variation (due to context) 

 about  -  [ax b aw]  32% 

   -  [ax b aw t] 16% 

   -  [ix b aw]  8% 

•  Lexical variation 

 about  -  [baw]  9% 
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•  we can model the distribution of this variation by introducing 
 probabilities into a FSA 

= a Weighted Automaton  (Markov Chain) 

•  Models Sociolinguistic variation 

t ow m aa t ow 

ey 

.95 

.05 

Modeling English Pronunciation 
Variation 
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•  model allophonic variation: 

 

t ow m aa t ow 

ey 

.95 

.05 

ax 

.35 

.05 

.60 

dx 

.05 

.95 

Modeling English Pronunciation 
Variation 
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•  “about”: actual weighted automaton trained on 
pronunciations of Switchboard Corpus 

start ix b ae t end 

aw 

.85 

.15 

ax 

.68 

.20 

.12 

dx 

.30 

.16 

.37 

.63 

.54 

Modeling English Pronunciation 
Variation 



Edit 
Distance 
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Minimum Edit Distance 

•  Spell checking: check writing against list of 
words/morphotactics 

•  Suggest list of alternatives? 
  closest match 
  fuzzy match 

•  How to calculate the “distance” between two 
words:  minimum edit distance 

•  The minimal number of deletions, insertions, 
substitutions to go from word a to b 
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Minimum Edit Distance 
•  intention  vs  execution 
•  3 operations (deletion, insertion, substitution) 
•  Alignment 

•  Levenshtein distance: equal weight to all operations, no 
substitution (1substition = 1 deletion + 1 insertion) 

•  Levenshtein distance of 8 in example above 

    

i n t e * n t i o n 

* e x e c u t i o n 
d s s i s 
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Minimum Edit Distance 
    i n t e n t i o n   

[delete i]       n t e n t i o n 
[substitute n for e]     e t e n t i o n 
[substitute t for x]     e x e n t i o n 
[insert c]       e x e c n t i o n 
[substitute n for u]     e x e c u t i o n 
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Minimum Edit Distance 
•  Computed through dynamic programming 
•  Solve problem by combining solutions to 

subproblems 
•  Table-driven 

•  Useful for 
-  Alignment 
-  Fuzzy string match 
-  Spelling correction 
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Algorithm 

Function LEVENSHTEIN-DISTANCE(target,source) returns levenshtein-distance 
 
n ß length(target) 
m ß length(source) 
Create a distance matrix distance[n+1,m+1] 
Initialize the 0th row and column to be the distance from the empty string 

 distance[0,0] = 0 
 for each column i from 1 to n do 
  distance[i,0] ß distance[i-1,0] + 1 (= insertion cost) 
 for each row j from 1 to m do 
  distance[0,j] ß distance[0,j-1] + 1 (= deletion cost) 

For each column i from 1 to n do 
  for each row j from 1 to m do 

  distance[i,j] ß MIN(  distance[i-1,j] + 1 (= insertion-cost), 
    distance[i,j-1] + 1 (= deletion-cost), 
    distance[i-1,j-1] + 2 (substition cost if A≠B) 
    ) 

Return distance[n,m] 
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Edit distance matrix 
n 9 ↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↙←↓12 ↓11 ↓10 ↓9 ↙8 

o 8 ↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↓10 ↓9 ↙8 ↓9 

i 7 ↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↓9 ↙8 ←9 ←10 

t 6 ↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙8 ←9 ←10 ←↓11 

n 5 ↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↙↓10 

e 4 ↙3 ←4 ↙←↓5 ←6 ←7 ↙←↓8 ↙←↓9 ↙←↓10 ↓9 

t 3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙7 ←↓8 ↙←↓9 ↓8 

n 2 ↙←↓3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↓7 ↙←↓8 ↙7 

i 1 ↙←↓2 ↙←↓3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙6 ←7 ←8 

ε 0 1 2 3 4 5 6 7 8 9 

ε e x e c u t i o n 



47 

n 9 ↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↙←↓12 ↓11 ↓10 ↓9 ↙8 

o 8 ↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↓10 ↓9 ↙8 ↓9 

i 7 ↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↓9 ↙8 ←9 ←10 

t 6 ↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙8 ←9 ←10 ←↓11 

n 5 ↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↙↓10 

e 4 ↙3 ←4 ↙←↓5 ←6 ←7 ↙←↓8 ↙←↓9 ↙←↓10 ↓9 

t 3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙7 ←↓8 ↙←↓9 ↓8 

n 2 ↙←↓3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↓7 ↙←↓8 ↙7 

i 1 ↙←↓2 ↙←↓3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙6 ←7 ←8 

ε 0 1 2 3 4 5 6 7 8 9 

ε e x e c u t i o n 

    i n t e n t i o n   
COL0  [delete i]      n t e n t i o n 
COL1  [substitute n for e]     e t e n t i o n 
COL2  [substitute t for x]     e x e n t i o n 
COL3        e x e n t i o n    
COL4  [insert c]      e x e c n t i o n 
COL5  [substitute n for u]     e x e c u t i o n 
COL6        e x e c u t i o n 
…COL9           e x e c u t i o n   

Edit operations are determined by starting from the top right cell, following the arrows to 
find a path to cell0. Often, several paths are possible. 

Path1 
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n 9 ↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↙←↓12 ↓11 ↓10 ↓9 ↙8 

o 8 ↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↓10 ↓9 ↙8 ↓9 

i 7 ↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↓9 ↙8 ←9 ←10 

t 6 ↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙8 ←9 ←10 ←↓11 

n 5 ↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙←↓9 ↙←↓10 ↙←↓11 ↙↓10 

e 4 ↙3 ←4 ↙←↓5 ←6 ←7 ↙←↓8 ↙←↓9 ↙←↓10 ↓9 

t 3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↙7 ←↓8 ↙←↓9 ↓8 

n 2 ↙←↓3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙←↓8 ↓7 ↙←↓8 ↙7 

i 1 ↙←↓2 ↙←↓3 ↙←↓4 ↙←↓5 ↙←↓6 ↙←↓7 ↙6 ←7 ←8 

ε 0 1 2 3 4 5 6 7 8 9 

ε e x e c u t i o n 

    i n t e n t i o n   
COL0a  [delete i]      n t e n t i o n 
COL0b  [delete n]          t e n t i o n 
COL0c  [delete t]            e n t i o n 
COL1               e n t i o n    
COL2  [insert x]         e x n t i o n 
COL3  [substitute n for e]        e x e t i o n 
COL4  [insert c]        e x e c t i o n 
COL5  [insert u]          e x e c u t i o n   

Edit operations are determined by starting from the top right cell, following the arrows to 
find a path to cell0. Often, several paths are possible. 

Path1 



49 

Exercise 

n 5 

e 4 

l 3 

e 2 

d 1 

ε 0 1 2 3 4 5 6 7 

ε g e d e e l d 

Calculate the levenshtein distance between  
  ‘delen’ en ‘gedeeld’ 
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Exercise 

n 5 ↙←↓6 

e 4 ↙←↓5 

l 3 ↙←↓4 

e 2 ↙←↓3 

d 1 ↙←↓2 

ε 0 1 2 3 4 5 6 7 

ε g e d e e l d 

Calculate the levenshtein distance between  
  ‘delen’ en ‘gedeeld’ 
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Exercise 

n 5 ↙←↓6 ↓5 

e 4 ↙←↓5 ↙↓4 

l 3 ↙←↓4 ↓3 

e 2 ↙←↓3 ↙2 

d 1 ↙←↓2 ↙←↓3 

ε 0 1 2 3 4 5 6 7 

ε g e d e e l d 

Calculate the levenshtein distance between  
  ‘delen’ en ‘gedeeld’ 
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Exercise 

n 5 ↙←↓6 ↓5 ↙←↓6 

e 4 ↙←↓5 ↙↓4 ↙←↓5 

l 3 ↙←↓4 ↓3 ↙←↓4 

e 2 ↙←↓3 ↙2 ←↓3 

d 1 ↙←↓2 ↙←↓3 ↙2 

ε 0 1 2 3 4 5 6 7 

ε g e d e e l d 

Calculate the levenshtein distance between  
  ‘delen’ en ‘gedeeld’ 
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Exercise 

n 5 ↙←↓6 ↓5 ↙←↓6 ↓5 

e 4 ↙←↓5 ↙↓4 ↙←↓5 ↙↓4 

l 3 ↙←↓4 ↓3 ↙←↓4 ↓3 

e 2 ↙←↓3 ↙2 ←↓3 ↙2 

d 1 ↙←↓2 ↙←↓3 ↙2 ←3 

ε 0 1 2 3 4 5 6 7 

ε g e d e e l d 

Calculate the levenshtein distance between  
  ‘delen’ en ‘gedeeld’ 
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Exercise 

n 5 ↙←↓6 ↓5 ↙←↓6 ↓5 ↓4 

e 4 ↙←↓5 ↙↓4 ↙←↓5 ↙↓4 ↙3 

l 3 ↙←↓4 ↓3 ↙←↓4 ↓3 ↙←↓4 

e 2 ↙←↓3 ↙2 ←↓3 ↙2 ↙←3 

d 1 ↙←↓2 ↙←↓3 ↙2 ←3 ←4 

ε 0 1 2 3 4 5 6 7 

ε g e d e e l d 

Calculate the levenshtein distance between  
  ‘delen’ en ‘gedeeld’ 
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Exercise 

n 5 ↙←↓6 ↓5 ↙←↓6 ↓5 ↓4 ↙←↓5 

e 4 ↙←↓5 ↙↓4 ↙←↓5 ↙↓4 ↙3 ←↓4 

l 3 ↙←↓4 ↓3 ↙←↓4 ↓3 ↙←↓4 ↙3 

e 2 ↙←↓3 ↙2 ←↓3 ↙2 ↙←3 ←4 

d 1 ↙←↓2 ↙←↓3 ↙2 ←3 ←4 ←5 

ε 0 1 2 3 4 5 6 7 

ε g e d e e l d 

Calculate the levenshtein distance between  
  ‘delen’ en ‘gedeeld’ 
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Exercise 

n 5 ↙←↓6 ↓5 ↙←↓6 ↓5 ↓4 ↙←↓5 ↙←↓6 

e 4 ↙←↓5 ↙↓4 ↙←↓5 ↙↓4 ↙3 ←↓4 ↙←↓5 

l 3 ↙←↓4 ↓3 ↙←↓4 ↓3 ↙←↓4 ↙3 ←4 

e 2 ↙←↓3 ↙2 ←↓3 ↙2 ↙←3 ←4 ←5 

d 1 ↙←↓2 ↙←↓3 ↙2 ←3 ←4 ←5 ↙←6 

ε 0 1 2 3 4 5 6 7 

ε g e d e e l d 

Calculate the levenshtein distance between  
  ‘delen’ en ‘gedeeld’ 
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n 5 ↙←↓6 ↓5 ↙←↓6 ↓5 ↓4 ↙←↓5 ↙←↓6 

e 4 ↙←↓5 ↙↓4 ↙←↓5 ↙↓4 ↙3 ←↓4 ↙←↓5 

l 3 ↙←↓4 ↓3 ↙←↓4 ↓3 ↙←↓4 ↙3 ←4 

e 2 ↙←↓3 ↙2 ←↓3 ↙2 ↙←3 ←4 ←5 

d 1 ↙←↓2 ↙←↓3 ↙2 ←3 ←4 ←5 ↙←6 

ε 0 1 2 3 4 5 6 7 

ε g e d e e l d 

            d e l e n   
COL1  [insert g]         g d e l e n 
COL2  [insert e]       g e d e l e n 

COL3       g e d e l e n 
COL4       g e d e l e n 
COL5  [insert e]        g e d e e l e n 
COL6       g e d e e l e n 
COL6b  [delete e]     g e d e e l n 
COL7  [substitute n for d]    g e d e e l d 
 

Zie ook: http://www.let.rug.nl/kleiweg/lev/ 
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Assignment 
>>> from nltk.corpus import brown 
>>> corpus = brown.sents() 
>>> corpus[4] 
[u'The', u'jury', u'said', u'it', u'did', u'find', u'that', u'many', u'of', u"Georgia's", u'registration', u'and', u'election', u'laws', u'``', u'are', 
u'outmoded', u'or', u'inadequate', u'and', u'often', u'ambiguous', u"''", u'.'] 
 
Write a script that extracts a trigram language model from this corpus. You can do this in 5 
steps: 

1.  Create a dictionary (trigrams = {}) and add all trigrams in the corpus (key) and their associated count 
(value). 

2.  Create a dictionary (bigrams = {}) and add all bigrams in the corpus (key) and their associated count 
(value). 

3.  For every key in the trigram dictionary, divide the count by the value of the relevant bigram 
4.  Your trigram dictionary now contains probabilities 
5.  (save the dictionary using pickle) 

Write a script that computes the probability of a sentence, according to your language 
model 
>>> probability(corpus[4]) = <some value> 
DEADLINE:  22 December 2014 
 
Send python code through e-mail to guy.depauw@uantwerpen.be 
Don’t hesitate to contact your helpline guy.depauw@uantwerpen.be 
 


